Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Aerosol Med Pulm Drug Deliv ; 35(5): 239-251, 2022 10.
Article in English | MEDLINE | ID: covidwho-2062819

ABSTRACT

Background: Ivermectin has received worldwide attention as a potential COVID-19 treatment after showing antiviral activity against SARS-CoV-2 in vitro. However, the pharmacokinetic limitations associated with oral administration have been postulated as limiting factors to its bioavailability and efficacy. These limitations can be overcome by targeted delivery to the lungs. In this study, inhalable dry powders of ivermectin and lactose crystals were prepared and characterized for the potential treatment of COVID-19. Methods: Ivermectin was co-spray dried with lactose monohydrate crystals and conditioned by storage at two different relative humidity points (43% and 58% RH) for a week. The in vitro dispersion performance of the stored powders was examined using a medium-high resistance Osmohaler connecting to a next-generation impactor at 60 L/min flow rate. The solid-state characteristics including particle size distribution and morphology, crystallinity, and moisture sorption profiles of raw and spray-dried ivermectin samples were assessed by laser diffraction, scanning electron microscopy, Raman spectroscopy, X-ray powder diffraction, thermogravimetric analysis, differential scanning calorimetry, and dynamic vapor sorption. Results: All the freshly spray-dried formulation (T0) and the conditioned samples could achieve the anticipated therapeutic dose with fine particle dose of 300 µg, FPFrecovered of 70%, and FPFemitted of 83%. In addition, the formulations showed a similar volume median diameter of 4.3 µm and span of 1.9. The spray-dried formulations were stable even after conditioning and exposing to different RH points as ivermectin remained amorphous with predominantly crystalline lactose. Conclusion: An inhalable and stable dry powder of ivermectin and lactose crystals was successfully formulated. This powder inhaler ivermectin candidate therapy appears to be able to deliver doses that could be safe and effective to treat the SARS-COV-2 infection. Further development of this therapy is warranted.


Subject(s)
COVID-19 Drug Treatment , Administration, Inhalation , Antiviral Agents , Dry Powder Inhalers , Humans , Ivermectin , Lactose , Particle Size , Powders/chemistry , Respiratory Aerosols and Droplets , SARS-CoV-2
2.
Adv Drug Deliv Rev ; 189: 114527, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2060293

ABSTRACT

Lactose is the most commonly used excipient in carrier-based dry powder inhalation (DPI) formulations. Numerous inhalation therapies have been developed using lactose as a carrier material. Several theories have described the role of carriers in DPI formulations. Although these theories are valuable, each DPI formulation is unique and are not described by any single theory. For each new formulation, a specific development trajectory is required, and the versatility of lactose can be exploited to optimize each formulation. In this review, recent developments in lactose-based DPI formulations are discussed. The effects of varying the material properties of lactose carrier particles, such as particle size, shape, and morphology are reviewed. Owing to the complex interactions between the particles in a formulation, processing adhesive mixtures of lactose with the active ingredient is crucial. Therefore, blending and filling processes for DPI formulations are also reviewed. While the role of ternary agents, such as magnesium stearate, has increased, lactose remains the excipient of choice in carrier-based DPI formulations. Therefore, new developments in lactose-based DPI formulations are crucial in the optimization of inhalable medicine performance.


Subject(s)
Excipients , Lactose , Administration, Inhalation , Aerosols , Chemistry, Pharmaceutical , Drug Carriers , Dry Powder Inhalers , Humans , Particle Size , Powders
3.
Food Res Int ; 161: 111822, 2022 11.
Article in English | MEDLINE | ID: covidwho-2004073

ABSTRACT

The Covid-19 pandemic has strongly impacted people's lives and the food industry. In this sense, food products claiming nutritional and health-promoting benefits due to the presence of bioactive peptides and probiotics, such as Greek-style yogurt, have been in demand. The objective of this work was to investigate, through word association, the perception of the consumers regarding the seven concepts related to Greek-style yogurt (traditional, ultra-creamy, zero fat, high content proteins, zero lactose, light and with no added sugars), in the context of social isolation due to Covid-19. In this online survey, 346 participants completed a questionnaire. The participants were divided according to health concerns (increased, not changed, or decreased) and eating habits (improved, not changed, or worsened) during the Covid-19 pandemic. Chi-square and prototypical analysis were used as statistical tests. During the Covid-19 pandemic, based on self-report, around 66% of the participants had their eating habits and their concerns about health changed. The general associations were related to the categories pleasure, health, creamy, pleasant texture, food restriction, and loss of sensory quality. 'Health' and 'pleasure' were negatively associated with the conceptualization of Greek-style yogurt. For the zero-fat, light, and sugar-free Greek-style yogurts, the terms creamy and ultra-creamy are sensory appealing to the consumers. In general, the price and concerns about health are factors that strongly influence the purchase intention of Greek-style yogurts. The yogurts were associated with sensory and non-sensory characteristics, which can be useful for marketing strategies for of different product concepts.


Subject(s)
COVID-19 , Yogurt , COVID-19/epidemiology , Humans , Lactose , Pandemics , Technology , Yogurt/analysis
4.
Pharm Dev Technol ; 27(6): 635-645, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1915404

ABSTRACT

Remdesivir is one of the effective drugs proposed for the treatment of coronavirus disease 2019 (COVID-19). However, the study on inhalable regimen is currently limited though COVID-19 is respiratory diseases and infects lung area. This work aims to prepare inhalable remdesivir formulations and verify their effectiveness through in vitro evaluations. Formulations containing different ratios of jet-milled inhalable remdesivir (5, 10, 20,40, and 70%) with excipients were produced and characterized in terms of the particle size distribution, particle morphology, flowability, water content, crystallinity, the water sorption and desorption capabilities, and the aerodynamic performance. Results indicating that drug loading are a vital factor in facilitating the dispersion of remdesivir dry powder, and the ternary excipient plays a negligible role in improving aerosol performance. Besides, the 70% remdesivir with lactose carrier (70% RD-Lac) was physically stable and retain high aerosol performance after conditioned at 40 °C and 75% RH for a month. Therefore, formulation 70% RD-Lac might be recommended as a candidate product for the potential treatment of COVID-19.


Subject(s)
COVID-19 Drug Treatment , Excipients , Adenosine Monophosphate/analogs & derivatives , Administration, Inhalation , Alanine/analogs & derivatives , Dry Powder Inhalers/methods , Humans , Lactose , Particle Size , Powders , Respiratory Aerosols and Droplets , Water
SELECTION OF CITATIONS
SEARCH DETAIL